CANDIDATE NAME ## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education NS RanaCambridge.com | * | | |------------|--| | W | | | 7 | | | 7 | | | 6 | | | ∞ | | | W | | | 4 | | | ∞ | | | W | | | 4 | | | y - | | | CENTRE | | | | CANDIDA | | | | | | |------------------|--|--|--|--------------------|-----|--------|------|------|-------| | CENTRE
NUMBER | | | | CANDIDA'
NUMBER | IE | | | | | | | | | | | | | | | | | CHEMISTRY | | | | | | | | 062 | 20/21 | | Paper 2 | | | | | Oct | ober/l | Nove | mber | 2012 | Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. A copy of the Periodic Table is printed on page 16. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | | | | | |--------------------|--|--|--|--|--|--| | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | Total | | | | | | | 1 hour 15 minutes This document consists of 13 printed pages and 3 blank pages. The diagram shows the structures of five compounds, A, B, C, D and E, containing of Α В C D Ε (a) Answer these questions using the letters A, B, C, D or E. Each compound can be used once, more than once or not at all. Which one of these compounds - (i) is an unsaturated hydrocarbon,[1] - (vi) is a product of fermentation?[1] - (c) Compound B is inert to most chemical reagents. It is made by reacting chlorine with carbon disulfide in the presence of an aluminium chloride catalyst. What do you understand by the following terms? | compound | | |----------|-----| | | [1] | | inert | [1] | | catalyst | [1] | [Total: 10] **(b)** Hydrogen chloride dissolves in water to form a solution of hydrochloric acid. A student titrated aqueous ammonia with hydrochloric acid using the apparatus shown below. (i) State the name of the pieces of apparatus labelled **A** and **B**. | A is a | [1] | |---------------|---------| | B is a |
[1] | (ii) Describe how the pH value of the solution in **B** changes as hydrochloric acid is added until the acid is in excess. | TO. | | |-----|--| | | (iii) | Com | plete | the v | word a | and syr | nbol e | quations | s for th | is react | tion. | | | OSC S | |-----|-------|-------|-------|-------|--------|---------|---------|---------------------------------|----------|----------|----------|---------|---------|---------| | | | | amm | onia | + hy | ydrochl | oric ac | $point id \rightarrow$ | | | | | | 1 | | | | | | | + | Н | C1 | \rightarrow | | NH₄C | 1 | | | [2] | | (c) | Des | cribe | what | t hap | pens | when | you a | copper(l
dd aque
in exces | ous a | | a to a s | olution | of copp | oer(II) | [4] | For [Total: 13] www.PapaCambridge.com The reactivity of different metal oxides was compared by heating them with metal 3 crucible. The results are shown in the table below. | mixture | observations | | | |------------------------|--------------|--|--| | iron oxide + zinc | reacts | | | | lead oxide + iron | reacts | | | | magnesium oxide + zinc | no reaction | | | (a) (i) Use the results in the table to suggest the order of reactivity of the metals iron, lead, magnesium and zinc. | most reactive - | → least reactive | |--|------------------| | | [2] | | (ii) Predict whether iron will react with zinc oxide. Explain your answer. | | | | | | | [1] | | (b) Which two of the following statements about metals are correct Tick two boxes. | rt? | | Metals conduct electricity and heat. | | | All Group IV elements show metallic properties. | | | Magnesium is extracted by heating its oxide with carbon. | | | All metals have high densities. | | | Iron is a transition element. | | [2] (c) Sand and salt (sodium chloride) are both solids. | | the state of s | | |------|--|--| | | 6 A. Day | | | Sar | nd and salt (sodium chloride) are both solids. | | | (i) | Describe the arrangement and movement of the particles in a solid. | | | | arrangement | | | | movement[2] | | | /::\ | Describe however, and a second the second forms a minimum of second and self- | | | | movement | [2] | |------|---|-----| | (ii) | Describe how you could separate the sand from a mixture of sand and salt. Give full details of how this is carried out. | | | | | | | | | | | | | | | | | | (d) The diagram below shows the apparatus used to separate ethanol and water from a mixture of ethanol and water. Complete the following sentences about this separation using words from the list below. | condenser | crystallisation | distillation | flask | heavy | | | | |--|------------------------|-----------------|------------------|--------------------|--|--|--| | higher | lower | solid | volatile | vapour | | | | | Fractional | is used | d to separate a | mixture of water | and ethanol. The | | | | | temperature at the | e top of the fractiona | ting column is | tha | an the temperature | | | | | at the bottom. The more liquid evaporates and moves further up the | | | | | | | | | column. It eventu | ally reaches the | V | where the | changes | | | | | to a liquid. | | | | [5] | | | | [Total: 15] | 4 | Lithium has two naturally-occurring isotopes, | ⁶ ₃ Li and | ⁷ Li | |---|---|----------------------------------|-----------------| | | | | | www.PapaCambridge.com (a) What do you understand by the term *isotope*? **(b)** Draw a **labelled** diagram to show the atomic structure of an atom of ${}_{3}^{7}Li$. Show the particles in the nucleus as well as the electrons. [5] (c) Lithium reacts with oxygen to form lithium oxide, Li₂O. Complete the equation for this reaction. [3] (d) Aqueous lithium chloride is electrolysed using the apparatus shown below. - (i) On the diagram above, label: - the electrolyte - the anode. [2] - (ii) What do you understand by the term aqueous?[1] (iii) Explain why aqueous lithium chloride is able to conduct electricity. [1] [Total: 13] For miner's e [4] 5 (a) Match the fuel on the left with the information on the right. The first one has been done for you. (b) Two students investigated some fuels to find which gave off the most energy. They tested four liquid fuels using the apparatus shown below. | (i) | In each experiment, the amount of fuel burnt was the same. | |-----|--| | | Suggest one other factor that should be kept the same in each experiment. | | | | | (ii) | The students used the thermometer to stir the water. Suggest why it is important to keep the water stirred. | | |------|---|-----| | | | [1] | (iii) The results are shown in the table below. | fuel | initial temperature of the water/°C | final temperature of the water/°C | |------------------|-------------------------------------|-----------------------------------| | ethanol | 24 | 40 | | propanol | 24 | 42 | | paraffin | 22 | 33 | | petroleum spirit | 20 | 40 | | | | Explain your answer. | | |-----|-------|---|-----| | | | | | | (c) | | is needed for fuels to burn. pie pie chart below shows the composition of the air. | | | | | A B mainly argon | | | | Stat | te the name of | | | | gas | A, | | | | gas | B | [2] | | (d) | Arg | on is a noble gas. | | | | (i) | State one use for argon. | | | | | | [1] | | | (ii) | To which period in the Periodic Table does argon belong? | | | | | | [1] | | | (iii) | Describe the chemical properties of argon. | | [Total: 13] For miner's e - A student placed a crystal of silver nitrate and a crystal of potassium iodide in a dish After an hour she observed that - the crystals had disappeared, - a yellow precipitate had appeared near the middle of the dish. | (a) | Use your knowledge of the kinetic particle theory and reactions between ions to explain these observations. | |-----|---| | | | | | | | | | | | | | | T 4.1 | | | [4] | (b) Potassium iodide reacts with aqueous chlorine. Complete the equation for this reaction. 2KI + $$\rightarrow$$KC l + I_2 [2] [Total: 6] 7 The diagram shows one molecule of sulfur. | (a) | How many atoms are there in three molecules of sulfur? | | |-----|---|-----| | | | [1] | | (b) | Calculate the relative molecular mass of sulfur. | | | | | | | | | | | | | [1] | | (c) | Explain how acid rain is formed when fossil fuels containing sulfur are burnt. In your answer, include | | | | • the name of a fossil fuel which contains sulfur, | | | | the gas formed when sulfur burns, the reactions which lead to the formation of acid rain. | | | | the reactions which lead to the formation of acid fain. | [4] | | (d) | Potassium sulfate can be used as a fertiliser. The potassium in this fertiliser is an important element for plant growth. Name two other elements , important for plant growth, which are present in many properties. | nst | | | fertilisers. | 001 | | | and | [2] | | (e) | Describe a test for sulfate ions. | | | | test | | | | result | [2] | | | | | For miner's e [Total: 10] **BLANK PAGE** www.PapaCambridge.com **BLANK PAGE** www.PapaCambridge.com **BLANK PAGE** www.PapaCambridge.com The Periodic Table of the Elements **DATA SHEET** | | 0 | 4 He lium | 20 Neon 10 | 40
Ar
Argon | 84
Krypton
36 | 131 X e Xenon 54 | Radon
86 | | 175
Lu | |-------|----|------------------|-----------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|---------------------------|---| | | => | | 19 Fluorine | 35.5 C1 Chlorine | 80
Br
Bromine | 127
 | At
Astatine
85 | | 173
Yb | | | 5 | | 16
Oxygen | 32
S
Suffur | Selenium Selenium 34 | 128
Te
Tellurium
52 | Po
Polonium
84 | | 169
T B | | | > | | 14 N itrogen 7 | 31
Phosphorus | AS
Arsenic | | 209
Bis
Bismuth
83 | | 167
Fr | | | ≥ | | 12
Carbon
6 | 28
Si licon | 73
Ge
Germanium
32 | SD Tn 50 | 207 Pb Lead 82 | | 165
H | | | ≡ | | 11
Boron
5 | 27
A1
Aluminium
13 | 70
Ga
Gallium
31 | 115
 n
 Indium
49 | 204 T t Thallium | | 162
Dy | | | | | | | 65
Zn
Znc
30 | 112 Cd Cadmium 48 | 201
Hg
Mercury
80 | | 159
T. | | | | | | | 64
Copper | 108
Ag
Silver
47 | 197
Au
Gold | | 157
Gd | | Group | | | | | 59 Nicke l Nickel 28 | 106 Pd Palladium 46 | 195 Pt Platinum 78 | | 152
Eu | | Gre | | | | | 59
Co
Cobalt | 103
Rh
Rhodium
45 | 192 r | | 150
Sm | | | | T Hydrogen | | | 56
Fe
Iron | Ruthenium | 190
Os
Osmium
76 | | Pm | | | | | | | Mn
Manganese | Tc
Technetium
43 | 186 Re Rhenium 75 | | 144
Nd | | | | | | | Cr
Chromium | 96
Mo
Molybdenum
42 | 184 W Tungsten 74 | | 141
Pr | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181 Ta Tantalum 73 | | 140
Ce | | | | | | | 48 T Titanium | 91 Zr | 178 Hf
Hafnium
72 | | | | | | | | | Scandium | 89 × | 139 La Lanthanum * | 227 Ac Actinium 89 | series
eries | | | = | | 9 Be Beryllium | 24 Mg Magnesium | 40 Ca Catcium | Sr
Strontium | 137
Ba
Barium
56 | 226 Ra Radium 88 | anthanoid
Actinoid se | | | _ | | 7
Li
Lithium | 23
Na
Sodium | 39 K Potassium 19 | Rb
Rubidium | 133
Cs
Caesium
55 | Fr
Francium
87 | *58-71 Lanthanoid series
190-103 Actinoid series | | T 68 | | | | | | | | | | | | | | | | |----------------------------|----------|--|-----------------|------------|-------------|-----------------------|--------------------------|-----------|-------------|-------------|--------------------|--------------------|----------|------------------------|-------------------| | Series | 140 | 141 | 144 | | 150 | 152 | 157 | | 162 | | 167 | 169 | 173 | 175 | | | id series | Cerium | Praseodymium | | Promethium | Samarium | Eu
Europium | Gadolinium
Gadolinium | To | Dysprosium | Holmium. | Erbium | THulium
Thulium | Yb | Lutetium | | | a = relative atomic mass | 232 | n c | 238 | 1.0 | 79 | 559 | 64 | | 8 | 9 | 200 | 200 | 0/ | - | 4 | | X = atomic symbol | T | Protactinium | O ranium | Neptunium | Plutonium | Americium | Surin S | Berkelium | Californium | Einsteinium | Ferminm
Ferminm | Mandelevium | Nobelium | Lr
Lawrendum | W. | | b = proton (atomic) number | 06 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 0, | 100 | 101 | 102 | 103 | 2. | | | The | The volume of one mole of any gas is 24 dm 3 at room temperature and pressure (r.t.p.). | one mole | of any ga | us is 24 dı | m³ at roor | n tempera | ature and | pressure | (r.t.p.). | | 1 | age con | Cambridge | and Cambridge Com | | | | | | | | | | | | | | | | | | Key The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.